Spatial dynamics of the logistics industry in California metropolitan areas

Urban Goods Movement Lecture Series
UCLA Luskin School of Public Affairs
April 6, 2016

Genevieve Giuliano
Sanggyun Kang
Sol Price School of Public Policy
University of Southern California
Overview

- What is “logistics sprawl”?
- Why should we care?
- Why should location patterns change?
- What do we know?
- Our approach
- Results
- Discussion
Urban sprawl in the literature

“The uncontrolled spreading of urban development into areas adjoining the edge of a city”*

- An enduring urban planning problem
 - 1950s suburbanization
 - 1974 *The Costs of Sprawl*
 - Critiques of suburban development
 - Newman and Kenworthy
 - Cervero, Ewing, others
 - New urbanism

*www.thefreedictionary.com
Main critiques

- Public and private capital and operating costs
- Transportation and travel
- Land, natural habitat
- Quality of life
- Social segmentation
What is logistics sprawl?

“Logistics sprawl is the phenomenon of relocation and concentration of logistics facilities (warehouses, cross-dock centres, freight terminal, etc.) towards suburban areas outside city centre boundaries” (Dablanc and Rakotonarivo, 2010)

• A shift of location from central areas to suburban or exurban areas
• Spatial concentration of activities in logistics clusters
Why should we care?

- Warehouse and distribution sector is growing faster than US economy
 - From 2003-2013, 33% increase in W&D employment, 4% increase in total employment
- W&D activity generates negative externalities
 - Truck trip generation hot spots
 - Air pollution, GHG emissions, noise, quality of life, possibly environmental justice impacts

If W&Ds are moving further from markets, truck travel and impacts increase
Why should location patterns change?

- **Economic restructuring**
 - Global, geographically dispersed supply chains
 - Reduced transport costs
 - Access to regional, national, global markets
 - Access to highways, rail nodes, intermodal
 - From “push” to “pull” logistics
 - Velocity and reliability, minimized dwell time

- **Scale economies**
 - Ever larger facilities
 - Automation

- **Land availability and prices**
 - Larger parcels, favorable zoning
What do we know?

- **Decentralization**
 - Los Angeles and Atlanta, 2000s, increase in geographic spread
 - Seattle, 2000s, decrease in geographic spread
 - UK and Japan, 2000s, suburbanization

- **Concentration**
 - One case study, Netherlands, increased concentration

Little evidence so far of consistent location trends across metro areas
Research approach and methods
Some considerations

- Changing location with respect to what?
 - If population and employment are decentralizing, then W&D may be following the market
 - If markets are national or global, does metropolitan location matter?

- Many possibilities for spatial shifts
 - Centralization vs decentralization
 - Concentration (clustering) vs dispersion
 - Implications for truck travel vary
Our approach

- Measures to capture
 - Absolute and relative change
 - Centrality and concentration

- Many possibilities
 - Use several measures and compare results

- Unit of analysis
 - Establishments, employment
Spatial measures

<table>
<thead>
<tr>
<th>Spatial structure</th>
<th>Absolute</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrality</td>
<td>Measure 1 Decentralization</td>
<td>Measure 2 Relative decent.</td>
</tr>
<tr>
<td></td>
<td>1-1 Ave distance to CBD</td>
<td>2-1 Ave distance to all employment</td>
</tr>
<tr>
<td></td>
<td>1-2 Ave distance to freight nodes</td>
<td>2-2 Ave distance to all population</td>
</tr>
<tr>
<td></td>
<td>1-3 Ave distance to W&D geographic center</td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td>Measure 3 Concentration</td>
<td>Measure 4 Relative conc.</td>
</tr>
<tr>
<td></td>
<td>3-1 W&D Gini coefficient</td>
<td>4-1 WD distribution relative to total emp density distribution</td>
</tr>
</tbody>
</table>
Measures 1-1 and 1-2
Measure 2

\[D = \frac{\sum_{j=1}^{N} \left(\frac{\sum_{i=1}^{n} D_{ij} \times X_i}{X} \right) \times E_j}{E} \]

Where,

- \(D_{ij} \) = distance to ZIP Code (i) from each W&D (j) or distance to census tract (i) from each W&D (j) (i = 1, 2, \ldots, n; j = 1, 2, \ldots, N)
- \(X_i \) = total employment in ZIP Code (i)
- \(X = \text{sum of } X_i \)
- \(E_i \) = the number of W/D establishments or employment in ZIP Code (j)
- \(E = \text{sum of } E_i \)
Test our measures with four largest metro areas in California

- Los Angeles (CSA)
 - Largest US international trade center
 - Second largest US metro area

- San Francisco (CSA)
 - Largest US high tech center

- Sacramento (CSA)
 - State capitol
 - Agricultural trade center

- San Diego (MSA)
 - Border city
Employment and establishment data

- Zip Code business patterns (ZBP), 2003 – 2013
 - Annual data
 - 6-digit industry code
 - Establishments and employment

Advantages
- Reliable and consistent
- Covers entire US

Disadvantages
- Location limited to zip code centroids
- Zip codes vary in size, not consistent with political boundaries
- Data suppression for small numbers
Population and employment trends

<table>
<thead>
<tr>
<th>City</th>
<th>Population (millions)</th>
<th>Employment (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
<td>2010</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>16.4</td>
<td>17.9</td>
</tr>
<tr>
<td>San Francisco</td>
<td>7.6</td>
<td>8.2</td>
</tr>
<tr>
<td>Sacramento</td>
<td>2.0</td>
<td>2.4</td>
</tr>
<tr>
<td>San Diego</td>
<td>2.8</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Source: US Census, ZBP
Trends in W&D activity

<table>
<thead>
<tr>
<th>Year</th>
<th>Los Angeles</th>
<th>San Francisco</th>
<th>Sacramento</th>
<th>San Diego</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>775</td>
<td>34,333</td>
<td>257</td>
<td>9,603</td>
</tr>
<tr>
<td>2013</td>
<td>1001</td>
<td>49,266</td>
<td>311</td>
<td>11,476</td>
</tr>
<tr>
<td>%△</td>
<td>29%</td>
<td>43%</td>
<td>21%</td>
<td>20%</td>
</tr>
</tbody>
</table>

W&D = NAICS 493, facilities that store goods and/or provide logistics services
Trends in employment/establishment

<table>
<thead>
<tr>
<th>Year</th>
<th>Los Angeles</th>
<th>San Francisco</th>
<th>Sacramento</th>
<th>San Diego</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>44.3</td>
<td>37.4</td>
<td>46.2</td>
<td>19.6</td>
</tr>
<tr>
<td>2013</td>
<td>49.2</td>
<td>36.9</td>
<td>39.4</td>
<td>20.0</td>
</tr>
<tr>
<td>%Δ</td>
<td>11%</td>
<td>-1%</td>
<td>-15%</td>
<td>2%</td>
</tr>
</tbody>
</table>
Spatial trends, establishments
Los Angeles

N of warehousing establishments by ZIP code in 2003-2013

Legend

N of Est. by ZIP code

- 1 - 3
- 4 - 8
- 9 - 18
- 19 - 31
- over 32

Data Year

- Data in 2013
- Data in 2003

METRANS
Transportation Center
San Francisco

Map showing the number of warehousing establishments by ZIP code in 2003-2013. The map includes various cities such as San Francisco, Oakland, San Mateo, and others, with different symbols indicating the number of establishments.
Average distance to CBD (miles)

<table>
<thead>
<tr>
<th></th>
<th>Los Angeles</th>
<th>San Francisco</th>
<th>Sacramento</th>
<th>San Diego</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>25.1</td>
<td>33.8</td>
<td>14.3</td>
<td>13.5</td>
</tr>
<tr>
<td>2013</td>
<td>28.9</td>
<td>35.1</td>
<td>15.0</td>
<td>12.8</td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>25.3</td>
<td>41.4</td>
<td>13.2</td>
<td>8.6</td>
</tr>
<tr>
<td>2013</td>
<td>36.1</td>
<td>44.8</td>
<td>13.8</td>
<td>10.4</td>
</tr>
</tbody>
</table>
Average distance to geographic center (miles)

<table>
<thead>
<tr>
<th></th>
<th>Los Angeles</th>
<th>San Francisco</th>
<th>Sacramento</th>
<th>San Diego</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>20.7</td>
<td>28.8</td>
<td>14.7</td>
<td>12.9</td>
</tr>
<tr>
<td>2013</td>
<td>22.7</td>
<td>29.5</td>
<td>14.1</td>
<td>12.6</td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>19.3</td>
<td>25.1</td>
<td>11.4</td>
<td>8.8</td>
</tr>
<tr>
<td>2013</td>
<td>23.0</td>
<td>26.3</td>
<td>13.7</td>
<td>9.8</td>
</tr>
</tbody>
</table>
Results: M1 Decentralization; change 2003-2013

<table>
<thead>
<tr>
<th>Metro area</th>
<th>1-1 Ave distance CBD</th>
<th>1-2a airports</th>
<th>1-2c seaports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Est</td>
<td>Emp</td>
<td>Est</td>
</tr>
<tr>
<td>LA</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SF</td>
<td>ns</td>
<td>+</td>
<td>ns</td>
</tr>
<tr>
<td>Sac</td>
<td>ns</td>
<td>+</td>
<td>ns</td>
</tr>
<tr>
<td>SD</td>
<td>ns</td>
<td>+</td>
<td>ns</td>
</tr>
</tbody>
</table>
M1-3 Ave distance to WD geo-center, 2003-2013

<table>
<thead>
<tr>
<th>Metro area</th>
<th>1-3 Ave distance WD geo-center</th>
<th>Decentralization with respect to employment, but not establishments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Est</td>
<td>Emp</td>
</tr>
<tr>
<td>LA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SF</td>
<td>ns</td>
<td>+</td>
</tr>
<tr>
<td>Sac</td>
<td>ns</td>
<td>+</td>
</tr>
<tr>
<td>SD</td>
<td>ns</td>
<td>+</td>
</tr>
<tr>
<td>Metro area</td>
<td>2-1 Ave distance all employment</td>
<td>2-2 Ave distance all population</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td>Est</td>
<td>Emp</td>
</tr>
<tr>
<td>LA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SF</td>
<td>ns</td>
<td>+</td>
</tr>
<tr>
<td>Sac</td>
<td>ns</td>
<td>+</td>
</tr>
<tr>
<td>SD</td>
<td>ns</td>
<td>+</td>
</tr>
</tbody>
</table>
M3 Gini coefficient, change 2003-2013

<table>
<thead>
<tr>
<th>Metro area</th>
<th>3 Gini coeff</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Est</td>
<td>Emp</td>
</tr>
<tr>
<td>LA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SF</td>
<td>+</td>
<td>ns</td>
</tr>
<tr>
<td>Sac</td>
<td>ns</td>
<td>+</td>
</tr>
<tr>
<td>SD</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

More concentration, but spatial configuration unknown
Share WD establishments in total emp density quartiles

- **LA-2003**
 - 1st Quartile: 39%
 - 2nd Quartile: 12%
 - 3rd Quartile: 46%
 - 4th Quartile: 3%

- **LA-2013**
 - 1st Quartile: 31%
 - 2nd Quartile: 17%
 - 3rd Quartile: 44%
 - 4th Quartile: 7%

- **SF-2003**
 - 1st Quartile: 32%
 - 2nd Quartile: 16%
 - 3rd Quartile: 31%
 - 4th Quartile: 20%

- **SF-2013**
 - 1st Quartile: 28%
 - 2nd Quartile: 22%
 - 3rd Quartile: 23%
 - 4th Quartile: 20%

- **SC-2003**
 - 1st Quartile: 46%
 - 2nd Quartile: 6%
 - 3rd Quartile: 48%
 - 4th Quartile: 17%

- **SC-2013**
 - 1st Quartile: 56%
 - 2nd Quartile: 7%
 - 3rd Quartile: 36%
 - 4th Quartile: 29%

- **SD-2003**
 - 1st Quartile: 50%
 - 2nd Quartile: 17%
 - 3rd Quartile: 32%
 - 4th Quartile: 20%

- **SD-2013**
 - 1st Quartile: 51%
 - 2nd Quartile: 17%
 - 3rd Quartile: 29%
 - 4th Quartile: 29%
Share WD emp in total emp density quartiles

LA-2003
LA-2013
SF-2003
SF-2013
SC-2003
SC-2013
SD-2003
SD-2013

1st Quartile
2nd Quartile
3rd Quartile
4th Quartile
Results summary 1

- **Decentralization**
 - Establishments: consistent evidence of decentralization for LA only
 - Employment: consistent evidence of decentralization for all

- **Land availability and price**
 - Large facilities locating in places where land is more available and cheaper
 - Airports in LA, SF, SD are in/near core
 - Price, demand as push factors
Results summary 2

- Importance of base conditions
 - LA decentralized most, but SF is most decentralized
 - Physical geography likely plays a role
 - Sacramento and SD much smaller, have much lower average densities, and far less decentralized by all measures
 - Labor force access as centralizer

- W&Ds are relatively concentrated
 - Concentration increasing, but spatial patterns differ
Explaining results 1

- Metropolitan size
 - Size correlated with density
 - Density a proxy for demand, land price
 - More land intensive activities are priced out of central locations
 - Zoning may contribute
 - Redevelopment of industrial zones
 - Demand pressures evident in LA, SF, not in Sac, SD
Economic structure

- Largest metro areas are trade centers
- W&Ds oriented to external markets have different location priorities
 - Access to national, international transport system
- LA and SF have more foreign trade than Sac and SD
- LA and SF have larger shares of employment in manufacturing, wholesale/retail trade, transportation
Commodity flows, 1,000 tons, 2007

<table>
<thead>
<tr>
<th></th>
<th>Internal</th>
<th>Domestic</th>
<th>Foreign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles</td>
<td>434,377</td>
<td>252,711</td>
<td>172,300</td>
</tr>
<tr>
<td>San Francisco</td>
<td>230,374</td>
<td>154,570</td>
<td>62,253</td>
</tr>
<tr>
<td>Sacramento</td>
<td>55,293</td>
<td>73,048</td>
<td>7,242</td>
</tr>
<tr>
<td>San Diego</td>
<td>46,349</td>
<td>37,721</td>
<td>14,003</td>
</tr>
</tbody>
</table>

Internal = origin and destination within zone
Domestic = origin or destination outside zone, in US
Foreign = origin or destination outside US

Source: Freight Analysis Framework, 2007
Physical geography

- LA a vast (5400 mi2) metro area with decentralized population and employment
- SF has bay in center; land availability and access more constrained
- Main foreign trade source in SD is border, a physical constraint to location shifts
- Sacramento is located in flat plain with capacity to expand in all directions, but still plenty of land availability near core
Next steps

- Expand to 100 largest US metro areas
- Develop and estimate models to test factors associated with decentralization, concentration
- Consider methods to estimate impacts of spatial change
QUESTIONS

giuliano@usc.edu