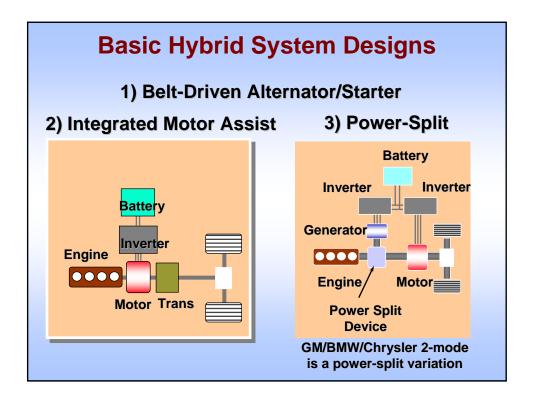
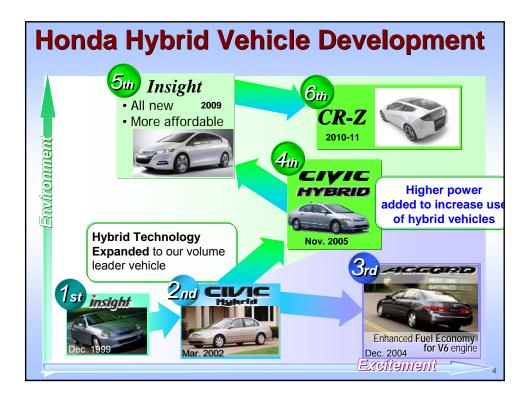
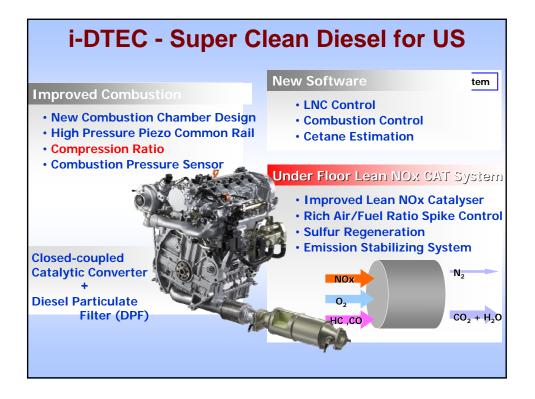
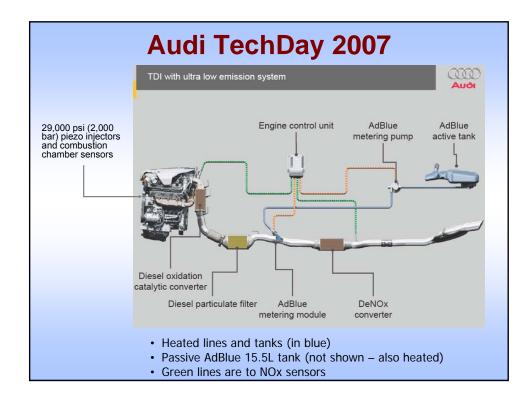
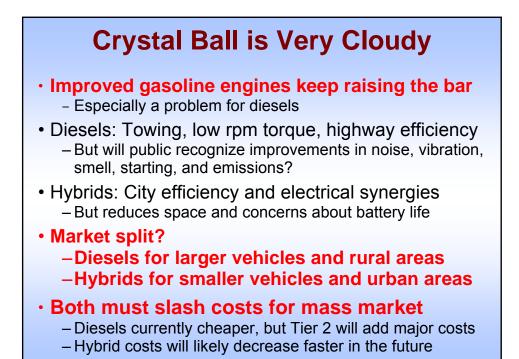

2002 NAS	CAFE	R	ep	C	Ì	τ									
Technology – Fuel Consumption Improvement	Improvement	Retai	I Price	_	Sub	,		Com	p	_	Mid	_		arge	e
Baseline – OHC, 4V, Fixed Timing, Roller Finger Follower Baseline (Large) –2V, Fixed Timing, Roller Finger Follower	%	Equivalent (RPE)		* Avg. 30.14 mpg 3.31 g/100m			* Avg. 26.96 mpg 3.71 g/100m			* Avg. 24.09 mpg 4.15		* Avg. 20.46 mpg 4.89			
Production Intent Product Technology		Low	High	2 1		m 3		2/100		2 1	/100	m 3	8	/1001	
Production-Intent Engine Technology		Low	riigh	1	2	,	Ľ.	1 2	3	1	- 2	1,	1	4	1
Engine Friction Reduction – 1-5%	196 - 596	\$35	\$140	x	x	x	x	x	x	x	x	x	x	x	,
Low Friction Lubricants – 1%	1%	\$8	\$11	x	x	x	x	x	x	x	x	x	x	x	Τ,
												-			
Multi-Valve, Overhead Camshaft – 2-5% (2-V vs. 4-V)	2%-5%	\$105	\$140										x	x	Γ
Variable Valve Timing – 1-2%	1%-2%	\$35	\$140	х	х		х	х	х	х	х	x	х	х	L
Variable Valve Lift & Timing – 3-8%	3%-8%	\$70	\$210		х	х		х	х		х	x		х	Ŀ
Cylinder Deactivation – 3-6%	3%-6%	\$112	\$252									x		х	
Engine Accessory Improvement – 1%-2%	1%-2%	\$84	\$112	х	х	х	x	x	х	x	х	x	x	х	
Engine Supercharging & Downsizing – 5-7%	5%-7%	\$350	\$560									х			
Production-Intent Transmission Technology															
5-Speed Automatic Transmission - 2-3%	2%-3%	\$70	\$154	х			x			x	х		х	х	Γ
Continuously Variable Transmission – 4-8%	4%-8%	\$140	\$350		х	х		x	x			x			L
Automatic Transmission w/ Aggressive Shift Logic – 1-3%	1%-3%	§-	\$70	x			x	_		х			x		L
6-Speeds Automatic Transmission – 1-2%	1%-2%	\$140	\$280					_			x		x	х	⊥
Production-Intent Vehicle Technology															
Aero Drag Reduction - 1-2%	1%-2%	S-	\$140				-	x	x		x	x		x	t
Improve Rolling Resistance – 1-11/2%	1%-13/2%	\$14	\$56	x	х	x	x	x		x	x		x	x	t
Safety Technology															Γ
5% Safety Weight Increase	-3% to -4%	\$0	\$0	-	x	v	v	×.	x	T.	x.	-	x		ł
Emerging Engine Technology	-3/4 10 -4/4			^	^	^	Ê	L.	^	<u>^</u>	Â	<u>^</u>	^	-	t
Intake Valve Throttling – 3-6%	3%-6%	\$210	\$420		x		-	x	-		x			x	ł
Camless Valve Actuation – 5-10%	5%-10%	\$280	\$560		-	x	-	1	x		~	x	\vdash	-	t
Variable Compression Ratio – 2-6%	2%-6%	\$210	\$490			x	-	-	x		-	x	\vdash	-	╞
Emerging Transmission Technology	2/0-0/1				-		-	-	-					-	t
Automatic Shift Manual Transmission (AST/AMT) – 3-5%	396-596	\$70	\$280				-	-			x			x	t
Advanced CVT's – 0-2% - Allows High Torque	0%-2%	\$350	\$840								-	x			t
Emerging Vehicle Technology														_	t
42 Volt Electrical Systems – 1-2%	1%-2%	\$70	\$280			х			x	x	х	x	x	х	t
Integrated Starter/Generator - 4-7% (Idle Off - Restart)	4%-7%	\$210	\$350			x			x			x			t
Electric Power Steering – 1.5% -2.5%	11/296-21/296	\$105	\$150			х			x		х	x		х	t
Vehicle Weight Reduction – 5%= 3-4%		\$210	\$350											_	t

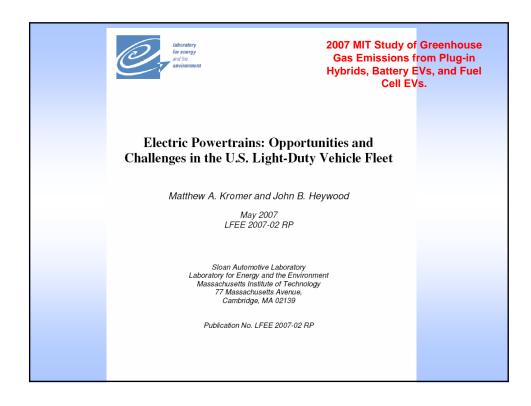


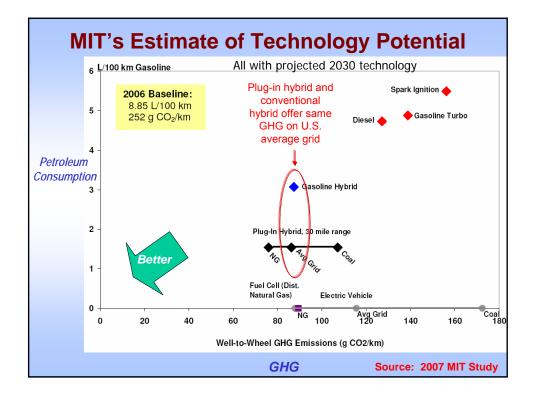








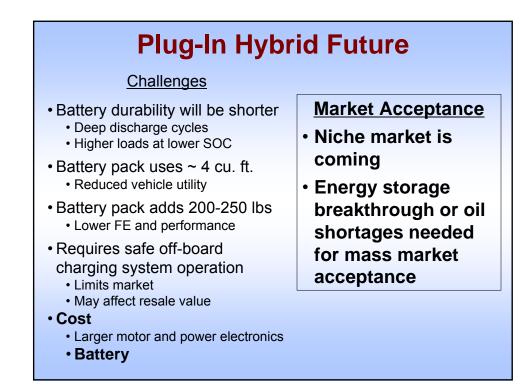


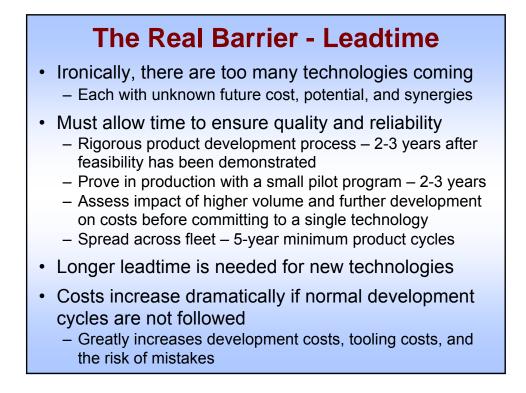


	Base Case	e: Estimated O	EM battery	cost from	Tables 16	and 26	
		Units	HEV	PHEV-10	PHEV-30	PHEV-60	
	Battery Siz	e kWh	1.0	3.2	8.2	16.5	
	Specific Co		\$900	\$420	\$320	\$270	
	Battery Co	st \$	\$900	\$1,450	\$2,700	\$4,500	
	ults are based on ic cost projectior	a vehicle lifetir 1. A comprehen				ndicate the in	the HEV and cremental cost
			sive list of a Com	ssumptions \$/L Saved, pared to NA	is detailed A-SI	ndicate the indicate the indica	cremental cost Saved, ed to HEV
e optimisti	ic cost projection Incremental Cost	n. A comprehen Fuel Used (L)	sive list of a	ssumptions \$/L Saved, pared to NA	is detailed	ndicate the indicate the indica	cremental cost
e optimisti NA-SI	ic cost projection Incremental Cost	n. A comprehen Fuel Used	sive list of a Com	ssumptions \$/L Saved, pared to NA	is detailed A-SI	ndicate the indicate the indica	cremental cos Saved, ed to HEV
e optimisti NA-SI HEV	ic cost projection Incremental Cost	n. A comprehen Fuel Used (L)	sive list of a Com Base Ca	ssumptions /L Saved, pared to NA se Opt	is detailed A-SI imistic	ndicate the ind in Table 51. \$/L Compar Base Case	cremental cost Saved, ed to HEV Optimistic
e optimisti NA-SI HEV	ic cost projection Incremental Cost - \$1,900	n. A comprehen Fuel Used (L) 13,200	sive list of a Com Base Ca	ssumptions \$/L Saved, pared to NA ise Opt	A-SI imistic	ndicate the ind in Table 51. \$/L { Compar Base Case 	cremental cost Saved, ed to HEV Optimistic
	ic cost projection Incremental Cost - \$1,900 (\$1,700) \$3,000	n. A comprehen Fuel Used (L) 13,200 7,500	Sive list of a Com Base Ca \$0.33	ssumptions \$/L Saved, pared to N/ se Opt \$ \$ \$	A-SI imistic 0.30	ndicate the ind in Table 51. \$/L : Compar Base Case 	cremental cos Saved, ed to HEV Optimisti

Source: 2007 MIT Study

The Liquid Fuel Advantage

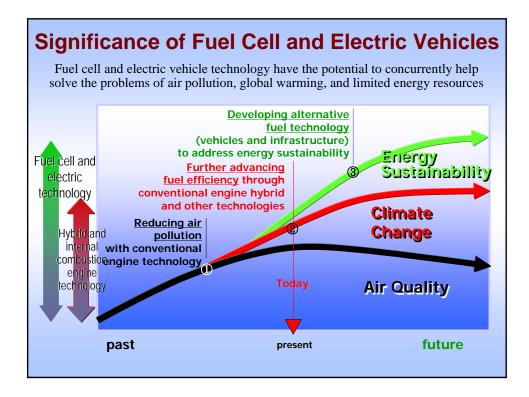

	Energy densit	ty per volume	Energy densi	ty per weight
	kWh/liter	vs gasoline	KWh/kg	vs gasoline
Gasoline	9.7		13.2	
Diesel fuel	10.7	110%	12.7	96%
Ethanol	6.4	66%	7.9	60%
Hydrogen at 10,000 psi	1.3	13%	39	295%
Liquid hydrogen	2.6	27%	39	295%
NiMH battery	0.1-0.3	2.1%	0.1	0.8%
Lithium-ion battery (present time)	0.2	2.1%	0.14	1.1%
Lithium-ion battery (future)			0.28 ?	2.1%

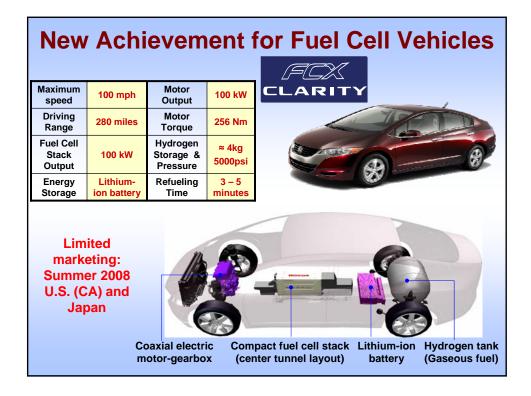

ENERGY FUTURE: Think Efficiency American Physical Society, Sept. 2008, Chapter 2, Table 1

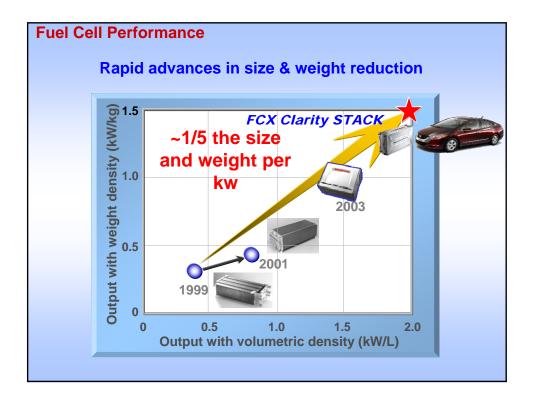
Future Hybrid Potential

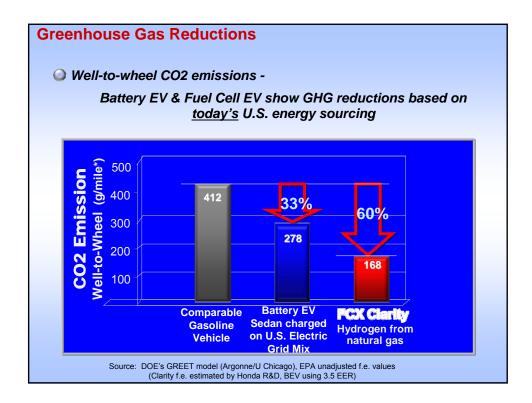
- Must compare to *future* gasoline engines –Gasoline engines will improve dramatically
- Watch direction of battery development
 - HEVs need higher power batteries
 - Current batteries have 2 to 3 times excess energy storage, to ensure adequate power and durability
 - PHEVs need higher energy batteries

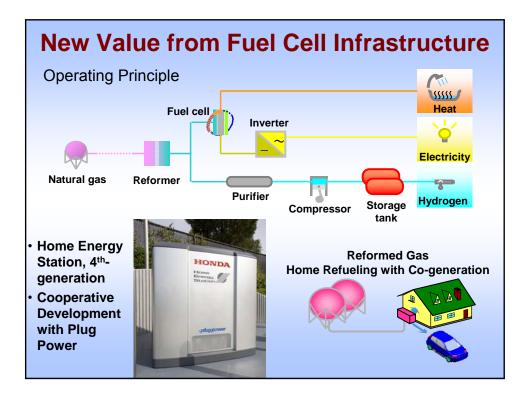
 High power Li-ion batteries currently in development will decrease HEV costs – increasing PHEV cost premium

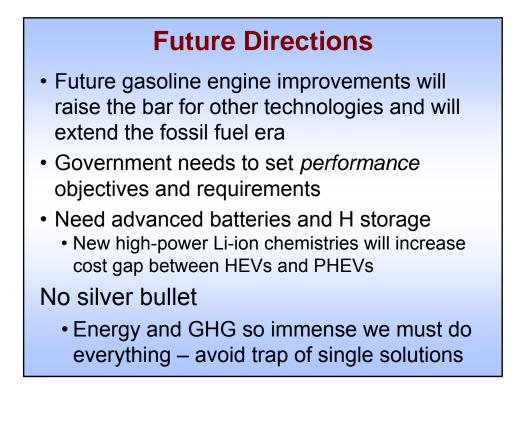


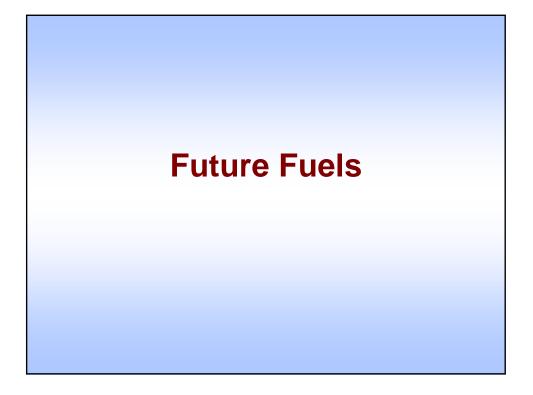



Technology du jour


- 25 years ago Methanol
- 15 years ago Electric vehicles
- 10 years ago Hybrid/electric vehicles
- 5 years ago Fuel cell vehicles
- 2 years ago Ethanol
- Today Plug-in hybrid vehicles
- 2011 What's next?


Extremely disruptive and wasteful

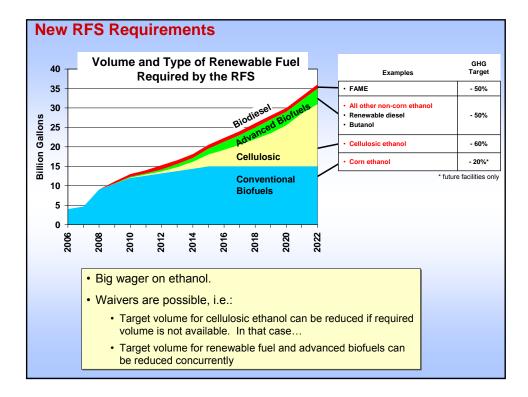




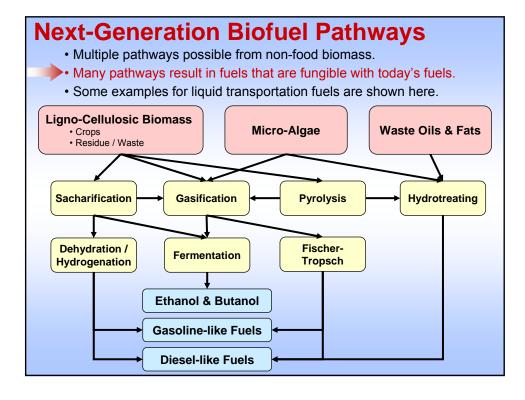
Electricity versus Hydrogen						
 Both are energy carriers – can be dirty or clean, depending on how created Neither will replace gasoline internal combustion for a long time 						
	Advantages	Needed improvements				
Electricity	 Existing infrastructure ??? Battery charge/discharge losses lower than fuel cell losses 	 Driving range – energy storage breakthrough Lower carbon grid Safe place to plug in Charge time 15 min = 440v x 1,000 amp 				
Hydrogen	 90% of energy from air Remote generation (wind, geothermal, waves, solar) Cogeneration – heat and electricity for home, fuel for car 	 Breakthrough in hydrogen storage and delivery Better ways to create hydrogen New infrastructure 				

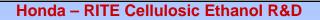
Home Refueling of a CNG Vehicle

- <u>Critical bridge to fuel cells and hydrogen</u> (refueling infrastructure and transitional fuel)
- Near zero emissions; AT-PZEV
- GHG reductions
- Fuel cost just 60% the cost of gasoline using Phill, the home refueling appliance



Honda's View on Biofuels


Honda is very supportive of biomass fuel development, and is actively involved in R&D efforts regarding the production and use of biofuels and other bio-products.

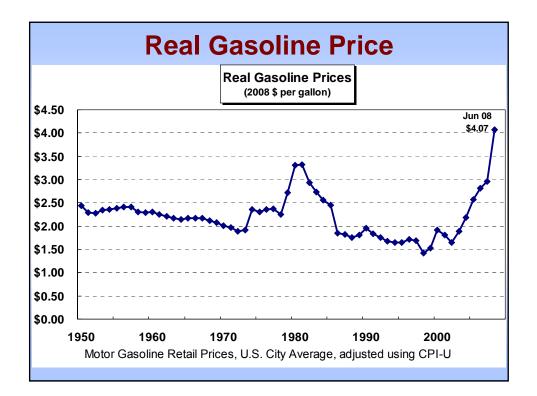

Honda believes an "ideal" biofuel...

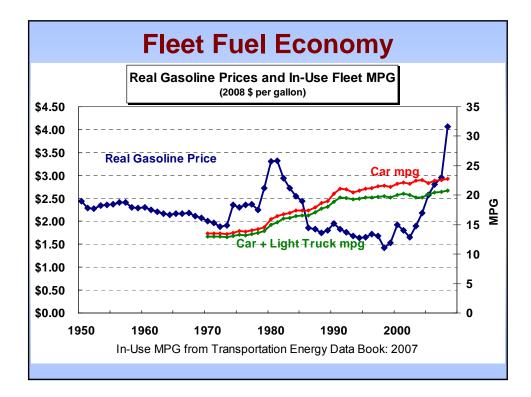
- 1. Has a true positive impact upon GHG reduction and energy security, as determined by complete and objective life cycle analyses.
- 2. Does not harm the environment through secondary effects, such as biodiversity loss.
- 3. Does not impact the price and availability of food supplies, directly or indirectly.
- 4. Has a pathway for sustained growth in the market.
- 5. Is compatible with all current and legacy vehicles, small engines, etc.
- 6. Is transparent to the consumer in terms of performance, price, and availability.
- 7. Can be transported using the existing pipeline infrastructure.

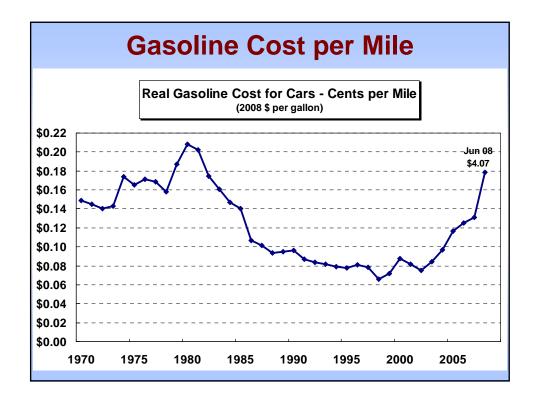
Assuming ≈ 30E	U	
Ethanol Blend		Challenges
E10 nationwide	gal	Acceptance by all states
E11 → E20 intermediate blends	gal E20	 Need to confirm compatibility with current and legacy autos, motorcycles, small engines, etc. Depending on compatibility findings, E10 might need to coexist with an intermediate blend for some period of time.
E85 (FFVs)	gal	 Consumer acceptance of a 26% to 36% drop in fuel economy* and range, in the absence of significantly lower E85 prices. Very limited availability outside of the corn belt states; < 5 public stations in California. Cellulosic ethanol and new infrastructure needed before significant market penetration is feasible.
		 * EPA 2008 Fuel Economy Guit Honda Civic FFV for Brazil market (E20 → E100) High consumer demand driven by substantial ethanol cost advantage. E100 is widely available. Brazil ethanol has small GHG footprint, compared to US corn ethanol.

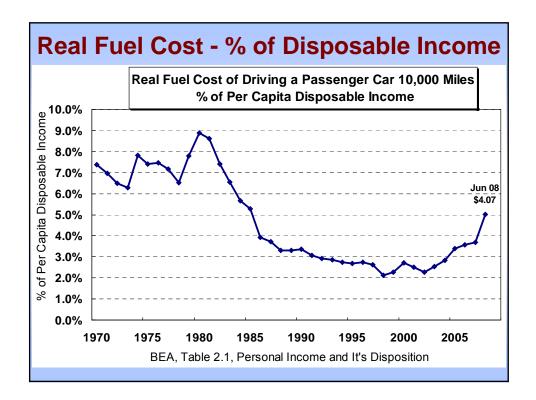
Major advancement achieved by the RITE – Honda R&D team:

New strain of bacterium with the following attributes:


- Highly resistant to fermentation inhibitors
- Can simultaneously use xylose and glucose (5- and 6-carbon sugars)
- High ethanol yield


Current activity:


- Process is now undergoing second scale-up
- Honda is providing the engineering technology, and RITE is developing the bacterial strains


RITE strainCorynebacteriumRITE = Research Institute of Innovative Technology for the Earthglutamicum

