Biofuels: The Land Use and Environmental

Implications of Addressing Transportation and Energy Problems

Sabrina Spatari

Civil, Architectural, and Environmental Engineering

Drexel University

October 17, 2011 UCLA Conference, Lake Arrowhead

Biofuels: The Land Use and Environmental

Implications of Addressing Transportation and Energy Problems

Dedication to Lee Schipper

October 17, 2011 UCLA Conference, Arrowhead Lake

Outline:

- Biofuels and policy context for decarbonizing transportation
- Global consequences of biofuels \rightarrow LUC, ILUC
- Life Cycle Assessment (LCA) of lignocellulosic biofuel conversion technologies
 - Models; uncertainty
 - Focus: GHG environmental impacts
- Better biomass and biofuels:
 - perennial grasses, ag. residues, winter crops,
 - pyrolysis bio-oil, higher alcohols, algae biooils

Introduction and Background

- A 2004 paper outlined a strategy for reducing GHG emissions from different economic sectors by 1 gigaton each, a "wedge analysis" Pacala and Socolow, Science, 2004. 305: 968-972
- The Gigaton Throwdown Project
 - Launched by venture capitalists in clean tech industry
 - What is the capital cost of investment to achieve a 1 gigaton reduction in GHG emissions by 2020?
- Biofuels are one avenue for achieving this "wedge" in the transportation sector

Policy Context:

- Since 2004, low carbon and renewable fuel policies in development around the world
 - LCFS (California, North-east states, Ontario), RFS (US)
 - Reduce GHGs relative to baseline gasoline ~93 gCO₂e/MJ
- Biofuels compatible, attractive strategy for reducing transportation's carbon intensity
 - Feedstocks today: corn (ethanol), soybean (diesel) lacksquare
 - Mingles energy with food markets
- Recent research on adverse "land-based" impacts of biofuels:
 - Direct and indirect CO_2 from land use change (LUC)
 - Other sustainability risks: water, biodiversity, food security
- Need a robust life cycle assessment tool to estimate complete fuel cycle GHG emissions + consequences

From M. O'Hare, UC Berkeley; Searchinger et al., 2008, 10.1126/science.1151861

Sustainability issues:

Sustainability criteria ¹		
Ecological	Socio-economic	
Water use	Food and energy security	
Water pollution	Land tenure	
Organic pollutants	Net Employment	
Agro-chemicals	Income distribution	
Biodiversity	Wages	
Soil erosion	Working conditions	
Fertilizer use	Child labor	
GMOs	Social responsibility	
GHGs/energy input	Competitiveness	
Harvesting practices	Culture - Traditional way of life	

¹Direct + Indirect Scale: Regional, national, global

Spatari, O'Hare et al. 2008

LCFS/RFS: Fuel Cycle Model

- Fertilizer
- Herbicides
- Harvesting operations -CO2/N2O flux

Feedstocks: - Winter barley

+ Indirect consequences

- Chemicals, Enzymes,
 Nutrients
 -Co-products: CO2, protein meal, hulls (energy recovery)
 -Denaturant (2% gasoline)
 <u>Technologies:</u>
 -Dry grind process
 -Sugar generation
 - -Fermentation
 - -co-product crediting

Blending with gasolineVehicle operation

Vehicle: -Ethanol-fueled vehicle (E92)

Policy Context:

- Since 2004, low carbon and renewable fuel policies in development around the world
 - LCFS (California, North-east states, Ontario), RFS (US)
- Biofuels compatible, attractive strategy for reducing transportation's carbon intensity
- New research on adverse "land-based" impacts of biofuels:
 - Direct and indirect CO₂ from land use change (LUC)
 - Other sustainability risks: water, biodiversity, food security
- Need a robust life cycle assessment tool to estimate complete fuel cycle GHG emissions + consequences

Methods

- LCA methods used to estimate C-intensity of biofuels
- Established process-based and EIO-LCA methods not equipped to estimate "marketmediated" LUC effects
 - Need new tools: Consequential LCA (CLCA)
 - Example: Price response via CGE or PE models
- Circumvent iLUC effects by selecting lignocellulosic feedstocks that do not compete for arable land and use "sustainable" fractions:
 - Ag. Residue, MSW, forest/mill waste, novel technologies (e.g., algae)

Key challenges with CLCA (1)

- Completeness: what are the "full" consequences of a decision (e.g., implementing the Renewable Fuel Standard) in the uncertain future with all its dynamics?
 - 1st order consequences: directly associated with the physical flows
 - 2rd order consequences: caused by equilibrium shifts controlled by price mechanisms
 - Other rebound effects
 - Data availability and uncertainties
 - E.g., what will be the marginal electricity mix for future biorefineries? (varies by time horizon, available resources, cost, technologies, capacities, etc.)

Key challenges with CLCA (2)

- Modeling tools
 - Commonly used tools:
 - Macro-economic and/or econometrical models, e.g.,

1) Partial equilibrium (PE) models

- 2) Computable general equilibrium (CGE) models
- Agent-based models
- System Dynamics models
- Scenarios

From: Zhang, Y. National Renewable Energy Laboratory (NREL) Reference: Davis, et al. 2009.

Ethanol: Energy and Environment

- Energy security: compared to gasoline, corn ethanol:
 - Significantly reduces petroleum use (~95%), moderately lowers (13%) fossil energy use (Farrell et al. 2006);
- Many increased risks related to LUC

iLUC

Plevin et al 2010

O'Hare et al 2009

13 Mullins et al 2010

Direct GHG Emissions – biofuels versus conventional & unconventional oil

energy source	energy yield (PJ/ha)	GHG emissions per disturbed area (t CO ₂ e/ha)	GHG emissions per energy output (g CO ₂ e/MJ)
Fossil Fuel			
California oil	0.79 (0.48-2.6)	73 (59-117)	0.09 (0.02-0.25)
	0.55 (0.33-1.8)		0.13 (0.03-0.35)
Alberta oil	0.33 (0.16-0.69)	157 (74-313)	0.47 (0.12-1.98)
	0.20 (0.092-0.40)	K	0.78 (0.20-3.39)
oil sands - surface mining 🚩	0.92 (0.61-1.2)	3596 (953-6201)	3.9 (0.83-10.24)
oil sands - in situ	3.3 (2.2-5.1)	205 (23-495)	0.04 (0.0-0.23)
Biofuel		1	
palm biodiesel (Indonesia/Malaysia)"	0.0062	702 ± 183	113 ± 30
palm biodiesel (Indonesia/Malaysia) 🏏	0.0062	3452 ± 1294	557 ± 209
soybean biodiesel (Brazil) ^a	0.0009	737 ± 75	819 ± 83
sugar cane (Brazil)"	0.0059	165 ± 58	28 ± 10
soybean biodiesel (Brazil) ^a	0.0009	85 ± 42	94 ± 47
corn ethanol (US)"	0.0038	134 ± 33	35 ± 9
corn ethanol (US)"	0.0038	69 ± 24	18 ± 6

Peatland conversion

Yeh et al. 2010, Environ. Sci. Tech. 44: 8766-8772

Better Biomass & Biofuels

- LCA methods used to estimate C-intensity of biofuels
- Established process-based and EIO-LCA methods not equipped to estimate "marketmediated" LUC effects
 - Example: Price response via CGE or PE models
- Minimize iLUC effects by selecting lignocellulosic feedstocks that do not compete for arable land and use "sustainable" fractions:
 - Ag. Residue, MSW, forest/mill waste, novel technologies (e.g., algae)

Bioenergy Production Pathways

16 Clarke et al., 2009

W. Barley – Spatial/temporal system boundaries

Barley 2009 Production by County for Selected States

Counties in the DelMarVa region within 100mi radius of Osage biorefinery; conversion to E98: ~38 g CO₂e/MJ

Significant Chesapeake Bay watersheds 17 Data sources: USDA (2010); NRCS (2011)

Uncertainty in LC GHG emissions (with LUC vs. without LUC)

DA = dilute acid pretreatment followed by simultaneous saccharification and cofermentation (SSCF) AFEX = ammonia fiber explosion pretreatment followed by SSCF

Spatari and MacLean (2010), Environ. Sci. Technol. 44: 8773-8780

Better Biofuels? Lignocellulosic biomass

- LCA models show reduction in GHG intensity of ag. residue and energy crops on marginal lands Spatari et al., 2010. *Bioresource Technology*, doi:10.1016/j.biortech.2009.08.067
- Lignocellulosic ethanol is still under development!
 - No competitive technologies at commerical-scale
 - Key technological challenge for R&D is enhancing individual processes AND overall integration
 - Demonstration scale projects
- Development of other infrastructure compatible fuels show promise but need further research
 - Upgraded pyrolysis bio-oil + biochar
 - Higher alcohols

Acknowledgements

- Osage Bio Energy
- USDA-ARS: Paul R. Adler, Kevin Hicks, Andrew McAloon, Akwasi Boateng
- Gregory W. Roth, Penn State University
- Wade Thomason, Virginia Tech
- Yimin Zhang, NREL

References

- 1. Clarke, D.; Jablonski, S.; Moran, B.; Anandarajah, G.; Taylor, G., How can accelerated development of bioenergy contribute to the future UK energy mix? Insights from a MARKAL modelling exercise. *Biotechnology for Biofuels* **2009**, **2**, **(1)**, **13**.
- 2. Davis, C.; Nikolic, I.; Dijkema, G. P. J., Integration of Life Cycle Assessment Into Agent-Based Modeling. *Journal of Industrial Ecology* 2009, 13, (2), 306-325
- 3. Ekvall, T., Limitations of consequential LCA. In *LCA/LCM E Conference, 2002.*
- 4. Mullins, K. A.; Griffin, W. M.; Matthews, H. S., Policy Implications of Uncertainty in Modeled Life-Cycle Greenhouse Gas Emissions of Biofuels *i. Environmental Science & Technology* **2011**, **45**, **(1)**, **132-138**.
- 5. O'Hare, M.; Plevin, R. J.; Martin, J. I.; Jones, A. D.; Kendall, A.; Hopson, E., Proper accounting for time increases crop-based biofuels' greenhouse gas deficit versus petroleum. *Environmental Research Letters* **2009**, *4*, **(2)**, **024001**.
- 6. Pacala, S.; Socolow, R., Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. *Science* **2004**, **305**, **(5686)**, **968-972**.
- 7. Plevin, R. J.; O'Hare, M.; Jones, A. D.; Torn, M. S.; Gibbs, H. K., Greenhouse Gas Emissions from Biofuels' Indirect Land Use Change Are Uncertain but May Be Much Greater than Previously Estimated. *Environmental Science & Technology* 2010, 44, (21), 8015-8021.
- 8. Sandén, B. A.; Karlström, M., Positive and negative feedback in consequential life-cycle assessment. *Journal of Cleaner Production* **2007, 15, (15), 1469-1481.**Spatari, S.; Bagley, D. M.; MacLean, H. L., Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies. *Bioresource Technology* **2010, 101, (2), 654-667.**
- Searchinger, T.; Heimlich, R.; Houghton, R. A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H., Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land Use Change. *Science* 2008, 319, (5867), 1238-1240.
- 10. Spatari, S.; Bagley, D. M.; MacLean, H. L., Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies. *Bioresource Technology* 2010, 101, (2), 654-667.
- 11. Spatari, S.; MacLean, H. L., Characterizing Model Uncertainties in the Life Cycle of Lignocellulose-Based Ethanol Fuels. Environmental Science & Technology **2010**, **44**, **(22)**, **8773-8780**.
- 12. Spatari, S.; Tomkins, C. D.; Kammen, D., Biofuels. In *Gigaton Throwdown: Redefining What's Possible for Clean Energy by* 2020, Paul, S.; Tomkins, C. D., Eds. San Francisco, 2009; p 150.
- 13. Sabrina Spatari, M. O. H., Kevin Fingerman, Daniel M. Kammen Sustainability and the low carbon fuel standard; University of California, Berkeley: Berkeley, October 3, 2008, 2008; p 32.
- 14. Yeh, S.; Jordaan, S. M.; Brandt, A. R.; Turetsky, M. R.; Spatari, S.; Keith, D. W., Land Use Greenhouse Gas Emissions from Conventional Oil Production and Oil Sands. *Environmental Science & Technology* **2010**, **44**, **(22)**, **8766-8772**.
- 15. Zhang, Y., Spatari, S., Heath, G., 2010. Are we ready for consequential life cycle assessment-based regulations? LCA X 21 Converence, Portland, OR. November 2-4, 2010