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Outline:

* Biofuels and policy context for decarbonizing
transportation

* Global consequences of biofuels - LUC, ILUC

* Life Cycle Assessment (LCA) of lignocellulosic
biofuel conversion technologies

 Models; uncertainty
* Focus: GHG environmental impacts

e Better biomass and biofuels:
e perennial grasses, ag. residues, winter crops,

» pyrolysis bio-oil, higher alcohols, algae bio-
oils
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Introduction and Background

« A 2004 paper outlined a strategy for reducing
GHG emissions from different economic sectors

by 1 gigaton each, a “wedge analysis”
Pacala and Socolow, Science, 2004. 305: 968-972

 The Gigaton Throwdown Project

 Launched by venture capitalists in clean tech industry

 What is the capital cost of investment to achieve a 1
gigaton reduction in GHG emissions by 20207

* Biofuels are one avenue for achieving this
“wedge” In the transportation sector

Spatari, Tomkins, Kammen, 2009
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e Since 2004, low carbon and renewable fuel policies In
development around the world
 LCFS (California, North-east states, Ontario), RFS (US)
 Reduce GHGs relative to baseline gasoline ~93 gCO,e/MJ

» Biofuels compatible, attractive strategy for reducing
transportation’s carbon intensity
 Feedstocks today: corn (ethanol), soybean (diesel)
 Mingles energy with food markets
 Recent research on adverse “land-based” impacts of biofuels:
— Direct and indirect CO,, from land use change (LUC)

olicy Cont

— Other sustainability risks: water, biodiversity, food security

 Need a robust life cycle assessment tool to estimate complete

fuel cycle GHG emissions + consequences .



U.S. corn/soybean farmers
sell land to developers,

land is now developed
nm q

Soy farmers everywhere
use more inputs to hll
increase yields

U.S. soybean
exports go
down and

world soybean
prices rise

cause Iarge GHG emissions

—

emissions

Potentially large
global land carbon
debt!

From M. O’Hare, UC Berkeley; Searchinger et al.,

Indirect LUC

emissions

Indirect process

Direct process emissions:
Change in CO2 flux on land

Additional land
in Brazil (for
instance) is put
into soy
production

Unobservable variables!

—

2008, 10.1126/science.1151861




Sustainabillity Issues:

Sustainability criterial

Ecological Socio-economic

Water use Food and energy security
Water pollution Land tenure

Organic pollutants Net Employment
Agro-chemicals Income distribution
Biodiversity Wages

Soll erosion Working conditions
Fertilizer use Child labor

GMOs Social responsibility
GHGs/energy input Competitiveness
Harvesting practices Culture - Traditional way of life

Direct + Indirect
Scale: Regional, national, global
Spatari, O’Hare et al. 2008




LCFS/RFS: Fuel Cycle Model

Fuel cycle o Vehicleuse —
Feedstock Ethanol Vehicle
Production Conversion Operation
- Fertilizer - Chemicals, Enzymes, - Blending with gasoline
- Herbicides -Nutrients - Vehicle operation
- Harvesting operations = -Co-products: CO2, protein
-CO2/N20 flux meal, hulls (energy recovery)
-Denaturant (2% gasoline)
Feedstocks: Technologies: Vehicle:
- Winter bar|ey -Dry grlnd prOC_eSS -Ethanol-fueled vehicle (E92)
-Sugar generation
-Fermentation -Compare with baseline
+ Indirect -co-product crediting -gasoline vehicle

(96 g CO2e/MJ)
consequences 8




Policy Context:

Since 2004, low carbon and renewable fuel policies
In development around the world

 LCFS (California, North-east states, Ontario), RFS (US)

e Biofuels compatible, attractive strategy for reducing
transportation’s carbon intensity

 New research on adverse “land-based” impacts of
biofuels:

— Direct and indirect CO, from land use change (LUC)
— Other sustainability risks: water, biodiversity, food security

 Need a robust life cycle assessment tool to estimate
complete fuel cycle GHG emissions + consequences



Methods
 LCA methods used to estimate C-intensity of
biofuels

o Established process-based and EIO-LCA
methods not equipped to estimate “market-
mediated” LUC effects

 Need new tools: Consequential LCA (CLCA)

« Example: Price response via CGE or PE models

10



Key challenges with CLCA (1)

« Completeness: what are the “full” consequences of
a decision (e.g., implementing the Renewable Fuel
Standard) in the uncertain future with all its
dynamics?

- 1St order consequences: directly associated with the
physical flows

- 2'9 order consequences: caused by equilibrium shifts
controlled by price mechanisms

- Other rebound effects

« Data avallability and uncertainties

- E.g., what will be the marginal electricity mix for future
biorefineries? (varies by time horizon, available
resources, cost, technologies, capacities, etc.)

References:
Zhang, Spatari, Heath, 2010; Ekvall T. 2002; Sandén and Karlstrém, 2007. 11



Key challenges with CLCA (2)

 Modeling tools

- Commonly used tools:
» Macro-economic and/or econometrical models, e.g.,
1) Partial equilibrium (PE) models
2) Computable general equilibrium (CGE) models
» Agent-based models
» System Dynamics models

> Scenarios

From: Zhang, Y. National Renewable Energy Laboratory (NREL)

Reference: Davis, et al. 2009.

12



‘Ethanol: Energy and

En

—

* Energy security: compared to gasoline, corn ethanol:
— Significantly reduces petroleum use (~95%), moderately lowers (13%) fossil

energy use (Farrell et al. 2006);
 Many increased risks related to LUC
ILUC

Time Effects
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Mullins et al 2010 13



Direct GHG Emissions — biofuels versus
conventional & unconventional oll

GHG emissions GHG emissions
per disturbed per energy
ENergy source energy yield (PJ/ha) area (t CO,e/ha) output (g CO.2/MJ)
Fossil Fuel
California oil 0.79 {0.48-2.6) 73 (59-117) 0.09 (0.02—-0.25)
0.55 (0.33-1.8) 0.13 (0.03—-0.35)
Alberta oil 0.33{0.16-0.69) 157 (74-313) / 0.47 (0.12-1.98)
| B / 0.20 {0.092-0.40) 0.78 (0.20—3.39)
D!| sands - EUJEEE mining 0.92 {0.61-1.2) 3596 (953-6201)  3.9(0.83-10.24)
oil sands - in situ 3.3(2.2-5.1) 205 (23—-4495) 0.04 (0.0-0.23)
Biofuel
palm biodiesel (IndnnesimMalaysia}:/ 0.0062 702 + 183 / 113 + 30
palm biodiesel {Indonesia’/Malaysia) 0.0062 3457 + 1764 RE7 + 209
soybean biodiesel (Brazil)® 0.0009 737 + 75 819 + 83
sugar cane (Brazil)® 0.0059 165 + 58 28 +10
soybean biodiesel (Brazil)® 0.0009 85 + 47 a4 + 47
corn ethanol (US)* 0.0038 134 + 33 15+ 0
corn ethanol (US)* 0.0038 O + 24 18+ 6
—> Peatland conversion 14

Yeh et al. 2010, Environ. Sci. Tech. 44: 8766-8772



Better Biomass & Biofuels

 LCA methods used to estimate C-intensity of
biofuels

o Established process-based and EIO-LCA
methods not equipped to estimate “market-
mediated” LUC effects

 Example: Price response via CGE or PE models

 Minimize ILUC effects by selecting lignocellulosic
feedstocks that do not compete for arable land
and use “sustainable” fractions:

* Ag. Residue, MSW, forest/mill waste, novel

technologies (e.g., algae) 15



Bioenergy Production Pathways
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16
Clarke et al., 2009



W. Barley — Spatial/temporal
system boundaries

Barley 2009
Production by County
for Selected States

Bushels

Not Estimated

< 200,000

200,000 - 499,999
500,000 - 999,999
1,000,000 - 1,999,999
2,000,000 - 3,999,999
4,000,000 +

Counties in the DelMarVa region within 100-
mi radius of Osage biorefinery;
conversion to E98: ~38 g CO,e/MJ

Significant Chesapeake Bay watersheds .
Data sources: USDA (2010); NRCS (2011)



Uncertainty in LC GHG emissions
(with LUC vs. without LUC)
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DA = dilute acid pretreatment followed by simultaneous saccharification and cofermentation (SSCF)
AFEX = ammonia fiber explosion pretreatment followed by SSCF
18
Spatari and MacLean (2010), Environ. Sci. Technol. 44: 8773-8780
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Better Biofuels? Lignocellulosic biomass

e LCA models show reduction in GHG intensity of

ag. residue and energy crops on marginal lands
Spatari et al., 2010. Bioresource Technology, doi:10.1016/j.biortech.2009.08.067

 Lignocellulosic ethanol is still under development!
— No competitive technologies at commerical-scale

— Key technological challenge for R&D is enhancing
iIndividual processes AND overall integration

— Demonstration scale projects

 Development of other infrastructure compatible
fuels show promise but need further research

 Upgraded pyrolysis bio-oil + biochar

 Higher alcohols 9
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