

Peter Brown
Project Manager, Long Range Planning
Sustainable Streets Division

Outline of the Talk

- 1. SFMTA what we do
- 2. Quantified capital and State of Good Repair needs
- 3. LCA factors versus traditional funding considerations
- 4. Energy consumption by vehicle type

Your challenge; what public policy changes do you envision to bring LCA forward?

SFMTA Today – Agency Background

- Multi-modal transportation agency; planner, designer, builder, operator:
 - Transit, Paratransit, Pedestrian & Bicycle Networks
 - Street Network, Signals & Systems
 - Parking Supply & Management
 - Station & Neighborhood Area planning/development review
 - Taxi Administration

Travel Demand Management

Travel Choices & Information

STRATEGY 2

Demand Pricing

STRATEGY 3

Transit-Oriented Development (TOD)

5%

17%

4% 5%

9%

10%

50% gap to reach target (389,000 metric tons CO₂)

2035 GHG Reduction Target: decrease GHG emissions to 1,023,000 metric tons of CO2

STRATEGY 4

Transit Improvements

STRATEGY 5

Complete Streets

STRATEGY 6

Electric Vehicles

Sustainability Strategies-Citywide

Table 4: Estimated Emissions in Metric Tons of CO₂ by Sector in San Francisco, 1990 to 2010²⁴

	1990	2010	Change
Municipal Fleet	80,000	88,000	10%
SFMTA (buses & rail)	68,000	53,000	-22%
All Transit	135,000	133,000	12%
Private Vehicles	1,810,000	1,934,000	7%
Transportation Sector	2,020,000	2,155,000	7%
Built Environment	4,080,000	3,760,000	-8%
Total	8,193,000	8,123,000	-1%

Modal Analysis- bike, walk, transit is most efficient

Bold Sustainable Mobility Goals

Combined Land-use/Transportation Policies

Sustainable Mobility - Local and Regional Transit Integration

Current Rapid & Future BRT Network

SFMTA Capital/Operational Needs

- 1. Capital sources: Federal 60%, State 18%, Local 22%
- 20 year agency needs of \$24 billion
- 2. Operating: Parking revenue 35%, Farebox 26%, Gen Fund 25%, Op Grants/other 14%

\$800 million annual operating budget

Life Cycle Analysis is absent from today's investment decisions

Capital Needs by Mode 20 year need = \$24 billion

Third State of Good Repair Roundtable

20-year needs = \$10.2 Billion

Life Cycle Analysis vs Transit Funding

LCA Considerations

- total cost over project life
- cumulative energy consumption
- cumulative env. impact
- asset payback period/ROI
- public benefit, internalized societal costs
- sustainability of investment (i.e. solar v fossil fuels)

Traditional \$

- age of the asset to be rehabilitated
- verified deferred maintenance
- fleet management plan?
- condition of the asset to be replaced
- project's conformity w
 FTA's spare ratios

How can we make policy changes to direct \$ toward LCA?

Transit Vehicle Stats and Energy Use

SFMTA moves the city population (750,000 trips) each day

	Five	Vehicle Types:	Daily Ridership:		
	512	Motor coaches (Biodiesel)	300,000		
	313	Trolley coaches	247,000		
"zero"	151	Light Rail Vehicles (LRVs)	160,000		
emissions	40	Cable Cars	27,500		
	35	Historic streetcars	20,000		

Note: Energy – LRVs, CC and Historic all = 5 kWh per mile

SFMTA Vehicle Energy Use / Cost / Emissi	ions Estimates b	y Mode							
<u> </u>				Mo	de			SFMTA	
	BART	LRV	Trolleys	30' Hybrids	40' Hybrids	40' Biodesiel	60' Biodeisel	Totals	Table notes:
Vehicles Per Mode	669	151	313	30	56	290	130	970	Virgil Dennis, Senior Maint. Controller, 10
			(140-73)		50	06		506	
CO2e lbs / passenger per mile	0.11	0.020	0.022	0.706	0.735	0.971	1.235		CO2 lbs per mile / Passengers per mile
Energy use / passenger per mile (kWh)	2.32	0.42	0.47	1.20	1.25	1.64	2.09		kWh per mile / Passengers per mile
Energy use / mile (kWh)	4.0	5.0	6.1	9.0	9.4	12.4	15.8		See notes below
Energy use / mile (DGE)	0.11	0.13	0.16	0.24	0.25	0.33	0.42		See notes below
MPG equivalent	20.3	7.53	6.17	4.17	4.00	3.03	2.38		Inverse of DGE / mile
Energy use / mile (joule)		18,000,000	21,960,000	32,538,240	33,894,000				See conversion factors below
Energy use / mile (BTU)		17,060	20,813	30,839	32,124	42,404	53,968		See conversion factors below
Energy cost / mile	\$0.20	\$0.25	\$0.31	\$0.72	\$0.75	\$0.99	\$1.26		See notes below
Cost per passenger-mile	\$0.33	\$0.02	\$0.02	\$0.10	\$0.10	\$0.13	\$0.17		Energy Cost per mile / Passergers per mile
PM lbs / mile (local pollutant)				1.03	1.03	1.03	1.03		Based on new engine certification
NOx lbs / mile (regional pollutant)				129	129	206	206		Based on new engine certification
CO2e lbs / mile (global pollutant)	0.19	0.24	0.29	5.33	5.56	7.33	9.33		See conversion factors below
Avg weekday passengers (mode total)	345,256	160,000	247,000		300,	000		707,000	See Avg Wkday Pass. and Miles tab
Average Miles / Day (mode total)	200,000	13,356	19,088		39,7	709		72,153	See Avg Wkday Pass. and Miles tab
Passenger-miles by mode	1.7	12.0	12.9		7.	6			Average Passengers / Mile
Pax miles (trips x ave trip length)	4,643,693	544,000	839,800		1,020),000		2,403,800	
Average daily miles by mode	299	88	61		78	8		228	Average Fleet Daily Miles / Vehicles
Conversion Factors:		Source:							
1 kWh = 3,600,000 joules	SI conversion (International System of Units).								
1 DGE (B10) = 37.66 kWh	USDOT GREET Model conversion tables.								
1 kWh = 3,412 BTU	USDOT GREET Model conversion tables.								
1 kWh = 0.047 lbs CO2	Calculated from DepCAP 2009-2010 metric ton totals (from PUC)								
1 DGE = 22.22 lbs CO2		Calculated fro	om DepCAP 2	2009-2010 met	ric ton totals	(from Agency	fuel records	together wi	th fuel vendor invoices)
1 kWh = \$0.05	Cost for kWh based on FY2009-2010 SFMTA Finance records								
1 DGE = \$3.00	Cost based on B10 biodiesel and \$3.00 average from FY2006-FY2010 SFMTA fuel invoices.								
BTU = British Thermal Unit									
DGE = Diesel Gallon Equivalent									
Calculation notes:									
Passenger miles = total unlinked trips are mult	tiplied by average	trip length		3.4					
Emissions from liquid fuel is B10 biodiesel and	represents tailpipe	only.							
Emissions from electricity represents source (n	on-hydroelectric c	ontent ~ 1% o	f annual tota	1).					
LRV energy use calculated by Nathan Grief, SF	MTA Senior LRV E	ngineer, based	d on vehicle s	pecifications a	and route perf	ormance.			
LRV does not include historic streetcars and ca	ıble car fleets (70 v	ehicles)							
Trolley bus energy use from on-board data co	llection logs taken	by Albert Fan	g, SFMTA Fle	et Engineering	g.				
Trolley bus number represents 40' and 60' fleet									
BART emissions are system wide and 67% percent of BARTs electricity comes from hydro electric and renewable energy									
Hybrid bus and diesel bus fuel economy calculated by Enoch Chu, SFMTA Fleet Engineering, based on SHOPS records for fuel use by mode.									
Projections:									
Electricity energy mix will vary annually based on Sierra water reserves for hydroelectric (assume roughly 99% hydroelectric)									
	Liquid fuel energy CO2 will decrease with higher blends of biodiesel (closed CO2 cycle - biogenic content)								
*	•	•							

CO2e and Energy (DGE) by Vehicle Type

SF Vehicle Energy Usage (electricity)

BART

30-90 min peaks

4.6 million pax miles

350k daily pax

200k daily miles

0.5-1.0 load factors

SFMTA

3-4 hour peaks

2.4 million pax miles

750k daily pax

70k daily miles

0.8-1.5 load factors

S

SFMTA

Energy Cost per mile & per pax mile

Commuters generate electricity by walking on special panel at Shibuya station in Tokyo.

Conclusions

- 1. San Francisco is performing well in: land use, ridership, passenger load and energy efficiency
- 2. Electric powered transit vehicles pass all tests
- 3. An LCA pilot is needed on the SFMTA system
- 4. Policy changes are needed to incorporate LCA; such as?
 - LCA requirement in lieu of just Cap/Operational?
 - Air Quality/GHG assessments to include LCA?

Thank you!

Peter Brown
Project Manager, Long Range Planning
Sustainable Streets Division
SFMTA | Municipal Transportation Agency
phone: 415.701.5485
peter.brown@sfmta.com