Energy Use in Goods Movement: Trends and Inter-Modal Comparisons

Henry Hogo Assistant Deputy Executive Officer Mobile Source Division Science and Technology Advancement South Coast Air Quality Management District

2011 UCLA Lake Arrowhead Symposium: Energy Policy and the Transportation – Land Use – Environment Connection Lake Arrowhead, CA

October 17, 2011

U.S. Energy Consumption by Energy Source, 2009

Note: Sum of components may not equal 100% due to independent rounding.

Source: U.S. Energy Information Administration, *Annual Energy Review 2009*, Table 1.3, Primary Energy Consumption by Energy Source, 1949-2009 (August 2010).

U.S. Consumption of Energy (quadrillion BTU)

U.S. Petroleum Consumption (millions of barrels per day)

Fuel Consumption by Sector

Container Movement – Truck vs. Rail

Number of Containers Per Train

- According to the Association of American Railroads:
 - Single Freight Train =
 280 or More Truck Trips
 - Rail 2 to 4 Times More Efficient than Trucks on per Ton-Mile Basis
 - Rail 2 to 3 Times Cleaner per Ton-Mile Basis

Container Movement – Short Sea Shipping vs. Trucks

Short Sea Shipping Proposals

- Diversion of Cargo from Freeways by Water Along Coastal Routes
- May Be Limited to Non-Time Sensitive Cargo Deliveries
- Should Use the Cleanest Marine Vessels

Container Deliver Methods from Southern California Ports

Delivery by Truck Breakeven Zone Potential Intermodal Delivery by Rail

Modal Shares of U.S. Commercial Freight Shipments by Weight

¹¹

Modal Shares of U.S. Commercial Freight Shipments by Ton-Miles

Technological Solutions

- Greater Deployment of the Cleanest Engine Technologies
- Greater Use of Alternative Fuels and Renewable Fuels

Alternative Fuels and Renewable Fuels Use

What are Renewable Fuels?

- Any fuel produced from renewable sources (e.g., biomass, waste, wind, solar, etc.)
- Examples
 - Ethanol
 - Biodiesel
 - Methane from Biomass, Waste
 - Gas-to-Liquid Fuels
 - Hydrogen
 - Electricity from Renewable Sources

Policy Drivers

- Energy Policy Act of 2005 Renewable Fuel Standard
 - 4.0 billion gallons/yr in 2006 growing to 7.5 bgy in 2012 (*Note: U.S. gasoline use in 2006 – 140.1 billion gals; California gasoline use in 2006 – 15.9 billion gals*)
- Energy Independence and Security Act of 2007
 - Increased Volumes
 - 4 New Standards

Energy Independence and Security Act of 2007 (EISA)

- Modifies 2005 RFS Program
 - Volumes increase to 36 Bgal/yr
 by 2022
 - Establishes new renewable fuel g 25.0 categories and eligibility requirements
 Dravidae new weivers and
 - Provides new waivers and paper credit provisions
 - Includes new obligated parties
- Includes new studies and reports

EISA – Four New Standards

Cellulosic Biofuel: 16 billion gallons by 2022

- Cellulosic ethanol, BTL diesel, green gasoline, etc.
- Must meet a 60% lifecycle GHG threshold

• Biomass-Based Diesel: 1 billion gallons by 2012 and Beyond

Must meet a 50% lifecycle GHG threshold

Advanced Biofuel: 21 billion gallons by 2022

- Includes cellulosic biofuels and biomass-based diesel plus an additional 4 billion gal
- Essentially anything but corn starch ethanol
- Must meet a 50% lifecycle GHG threshold

• Total Renewable Fuel: 36 billion gallons by 2022

- Includes up to 15 billion gallons conventional biofuel (ethanol derived from corn starch or any other qualifying renewable fuel)
- Must meet 20% lifecycle GHG threshold
- Only applies to new fuel production capacity

California Low Carbon Fuel Standard

- LCFS established January 2007
- ARB Board Adopted April 2009
- 10% reduction in carbon intensity by 2020
- Estimated 16 MMT reduction in GHG emissions by 2020
- Achieves about 10% of the total emission reductions required to meet the AB 32 target

Carbon Intensities of Various Heavy-Duty Vehicle Fuels

Estimated Number of Alternative Fuel Vehicles

Estimated Consumption of Alternative Fuels in California, 2009*

*Note: Total Gasoline Sale in 2009 - 14.8 billion gals

Percentage of Ethanol in U.S. Gasoline*

Source: U.S. EIA (2011)

Summary

- Intermodal Diversion
 - Historically, Based on Business Case
 - Environmental Concerns Dictate Need for Change
- Must Deploy the Cleanest Engine Technologies
- Greater Use of Alternative Fuels and Renewable Fuels