

Reducing Energy Consumption and Emissions Through Congestion Management

Kanok Boriboonsomsin University of California Riverside

"The Transportation - Land Use - Environment Connection" UCLA Conference Center at Lake Arrowhead October 16-18, 2011

Trends of Traffic Congestion in U.S.

- Traffic congestion in urban areas has been growing.
- The costs of congestion in 2010*
 - 4.8 billion hours of travel delay
 - 1.9 billion gallons of wasted fuel
 - \$101 billion of associated costs

*http://mobility.tamu.edu/ums/

Top 10 Urban Areas in 2010*

Areas with most travel delay

- 1. Washington DC
- 2. Chicago
- 3. Los Angeles
- 4. Houston
- 5. New York
- 6. Baltimore
- 7. San Francisco
- 8. Denver
- 9. Boston
- 10. Dallas

Areas with most wasted fuel

- 1. Washington DC
- 2. Chicago
- 3. Los Angeles
- 4. Houston
- 5. Denver
- 6. Seattle
- 7. New York
- 7. Baltimore
- 7. San Francisco
- 7. Dallas

Reducing Energy and Emissions Impacts from Surface Transportation

- Build cleaner, more efficient vehicles
 - Make vehicles lighter (and smaller)
 - Improve engine efficiency
 - Develop advanced powertrain technologies
- Develop and use alternative fuels
 - Biofuels
 - Synthetic fuels
- Decrease the amount of driving
 - Better land use/transportation planning
 - Travel demand management
- Improve transportation system efficiency

Improving Transportation System Efficiency

Through the implementation of *transportation systems management and operational (TSMO) strategies* and the supporting *intelligent transportation system (ITS) technologies*

- Regional collaboration and coordination
- Incident & emergency management
- Integrated corridor management (ICM)
- Active traffic management (e.g., lane/speed control)
- Managed lanes (HOV, HOT)

- Coordinated traffic signal timing and adaptive control
- Traveler information
- Commercial vehicle operations
- Transit enhancements (e.g., bus rapid transit and transit signal priority)
- Ramp management
- Road weather management

ITS Targeted Benefits

• Improving safety

UCR College of Engineering- Center for Environmental Research & Technology

- Reducing number of accidents
- Making accidents less severe
- Improving mobility
 - Increasing throughput
 - Maximizing economic opportunities
- Reducing energy and environmental impacts
 - Reducing vehicle energy consumption
 - Reducing vehicle emissions
 - Criteria pollutants
 - Greenhouse gases

Real-World Driving Speed Profiles

Energy/Emissions as a Function of Average Traffic Speed

Strategies for Reducing Energy/Emissions

Potential Savings from Congestion and Speed Management

Potential Savings from Traffic Flow Smoothing

Example – Congestion Management

• VMT by speed on SR-60 E in CA, 5-6 p.m., June 2007

 Eliminating congestion so that all VMT were at 60 mph would reduce energy/emissions by 7%.

Example – Speed Management

• VMT by speed on SR-60 E in CA, 5-6 p.m., June 2007

• Eliminating speeding so that all VMT were at 60 mph would reduce energy/emissions by 8%.

Example – Traffic Flow Smoothing

• Dynamic eco-driving technique that provides suggested driving speed to drivers while in congestion.

From Barth and Boriboonsomsin, 2009

• Real-world experiment on SR-91 in Southern California shows fuel savings of 13% for the eco-driving vehicle.

Near-Term vs. Long-Term Benefits

- TSMO and ITS strategies could be implemented relatively quickly (within a few years).
- Their potential energy/emission benefits <u>in near term</u> are significant and immediate.
- According to the *Moving Cooler* study, these benefits <u>in long term</u> could be compromised by "induced demand"
 - additional travel induced by the reduced cost of travel due to the added capacity of roadway.

http://movingcooler.info/

Findings from *Moving Cooler*

Cumulative Reductions in GHG Emissions from Baseline: 2010 – 2050	Min	Max
PAYD Insurance + VMT Fees	1.2 %	7.1 %
Regional Congestion Pricing	0.8 %	1.8 %
Combined Land Use Strategies	0.3 %	2.1 %
Combined pedestrian / bicycling strategies	0.2 %	0.5 %
Transit Capital Improvements	0.4 %	1.1 %
Employer-Based Commute Strategies	NA	1.7 %
Lower / Enforced Speed Limits	2.0 %	3.6 %
Eco-Driving	1.1 %	2.7 %
ITS / Operations	0.3 %	0.6 %
Freight (Truck APUs / Rail Capacity)	NA	0.4 %
Highway Expansion / Bottleneck Improvements	Increase in GHG emissions	

Discussions around Induced Demand

- Is the induced demand effect due to <u>added capacity</u> from new roadways the same as <u>increased capacity on</u> <u>existing roadways</u>? (Neudorff, 2010)
- Latent vs. induced demand (Shladover, 2011)
 - Latent demand is a short-term phenomenon that derives from the fact that people are often deterred from making trips that they would like to take because of the cost of those trips.
 - Induced demand is a long-term phenomenon associated with the interaction between transportation and land use.
- Can we manage induced demand?
 - Increase the cost of travel (e.g., road pricing, higher parking fees, higher fuel tax)
 - Use a combination of operational, pricing, public transit, and land use strategies

Closing Summary

- Strategies that improve transportation system efficiency can play a significant role in reducing energy/emissions from surface transportation.
- In addition to congestion management strategies, speed management and traffic flow smoothing strategies should also be considered.
- The potential energy/emission benefits in near term are significant and immediate.
- The long-term benefits in the context of possible induced demand effects need further research.
- Finally, traffic congestion is a problem that deserves serious attention even without the associated energy/emission issues.

References

- Barth, M. and Boriboonsomsin, K. (2008). Real-world carbon dioxide impacts of traffic congestion. *Transportation Research Record*, 2058, 163-171.
- Barth, M. and Boriboonsomsin, K. (2009). Energy and emissions impacts of a freeway-based dynamic eco-driving system. *Transportation Research Part D*, 14, 400-410.
- Neudorff, L. G. (2010). "Moving Cooler" An operations and ITS perspective. <u>http://movingcooler.info/Library/Documents/Moving%20Cooler_ITS</u> %20Perspective_Neudorff_Final_02202010.pdf
- Shladover, S. E. (2011). Challenges to evaluation of CO2 impacts of intelligent transportation systems. Proceedings of the 1st IEEE Forum on Integrated and Sustainable Transportation Systems, Vienna, Austria, June 29 – July 1.

Thank You.

kanok@cert.ucr.edu